
Theoret. Chim. Acta (Berl.) 41,183-186 (1976) 
© by Springer-Verlag 1976 

Ab initio Calculations on Octahedral (CH)x(NH)6_x 

Kees van der Meer and Jan J. C. Mulder 

Department of Theoretical Organic Chemistry, University of Leiden 

Received November 24, 1975 

Octahedral 38-, 44- and 48-electron systems are closed-shells and could be stable. The latter two 
systems have a high energy and dissociate via a non-symmetric path. (NH)6 in a chair conformation 

should be stable. 

Key words." Octahedral (CH)x(NH)6 x - Chair N6H 6 

In recent investigations Hogeveen and Kwant found (CH)~ + to possess 
Csv-symmetry [1]. One could go one step further and consider (CH)~ in octa- 
hedral symmetry. In this contribution we study this possibility with ab initio 
calculations. In order to be stable, first-order Jahn-Teller instabilities should not 
exist, i.e. no partially filled degenerate orbitals are permitted. Consider six NH- 
fragments, possessing 48 electrons, in octahedral conformation (point group Oh). 
The ls-orbitals split up to yield one alg-, one eg-, and one tlu-orbital. A similar 
situation holds for the N - H  bonds, and the nitrogen lone pairs add the third 
alo, e o, and qu. The N - H  "n"-orbitals combine to form the fourth t~u, and one 
tzo. However, a calculation of (NH) 6 shows an occupation 1-3alo, 1-3e 0, 1-3qu, 
1 tzo , 1 teu. The t~,- and e0-combination of the lone pairs are lying fairly high due 
to the crowding of these orbitals in the hole of the octahedron. The 4qu-orbital 
is so high in energy that a t2u-orbital will be occupied preferentially. One of the 
components of the t2u-orbital, triply degenerate, is shown in Fig. 1. It is seen to 
be antibonding, but interestingly, dissociation of a system in which this orbital is 
occupied into the corresponding 2 + 2 + 2 ,  3+3,  or 4 + 2  first-row atom mono- 
hydrides is symmetry-forbidden. The 44-electron system, in which the high-lying 
3co-orbital is now unoccupied, thus exhibits the same features. A calculation on a 
38-electron system finally shows the. t/u-orbital to be unoccupied. These com- 
pounds, closo-(CH)2(BH)4 are known to be stable [-2, 3]. We performed the 

Fig. 1. One of the components of the t2,-orbital 
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calculat ions with a min ima l  STO-3G basis set; in some cases a min ima l  STO 
basis set was used. The geometry of  all c o m p o u n d s  discussed was optimized.  We 
calculated the energies of several 48- and  44-electron systems suggested in the 
MO-analysis .  For  the former (NH)6 is suited, for the latter apart  f rom (CH)6 - a 
part ial  ca rbon  and  n i t rogen compos i t ion  may  be acceptable. 

5 

Fig. 2. Octahedral (XH)6 

Octahedral  (NH)6 , having N - N  b o n d  lengths of 1.84 A is calculated 702 
kca l /Mole  endothermic  compared  to three molecules c i s - ( N H ) 2 .  The highest 
occupied orbitals,  3% and  1 tzu, have Ion iza t ion  Potentials  (IP's) of  abou t  4 eV. 
These orbitals reflect the inabi l i ty  of n i t rogen  to behave like a pentavalent  a tom,  
and  mus t  be held responsible for the ins tabi l i ty  of the system. 

Table 1. Compounds discussed and calculated energies at the optimal 
geometry 

Compound Calculated Energy (a.u.) a 

octahedral (NH)6 STO - 327.7682 
chair (NH)6 H axial STO -329.0297 
octahedral (CH)6 - STO - 228.6519 

eis-HNNH STO - 109.6289 
chair (NH)6 H axial -325.7795 
chair (NH)6 H equat. - 325.7348 
octahedral (CH)2(NH) + + (1,3-C) - 291.6050 
octahedral (CH)3(NH)~- (1,2,5=C) - 275.7728 
octahedral (CH)4(NH)2 (1,3-N) - 259.3944 

cis-HNNH - 108.5453 
trans-HNNH - 108.5570 

eis-HCNH (RHF) - 92.1752 
HCNH + - 91.9978 
HCCH 75.8562 

triplet NH (RHF) - 54.2593 

" 1 a.u. = 27.21 e V = 627.2 kcal/Mole. 

Add i t ion  of 2s- and  2p-polar izat ion func t ions  at the center of mass, representing 
the influence of a caught  small  cat ion,  br ings the energy firmly down,  but  can do 
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little for the 3eo- and 1 t2,-orbitals, which in a united-atom approach form d- and 
f-functions. 

(NH)6 is isoelectronic with (CHa)6, cyclohexane. In a chair form with all 
nitrogen atoms tetrahedral the STO-3G calculations predict the more stable con- 
former with axial hydrogen atoms and all r (N-N)= 1.47 A to be 68 kcal/Mole 
resp. 90 kcal/Mole exothermic with respect to three molecules trans-(NH)2 resp. 
cis-(NH)2 ; the results of the STO-calculations are in complete accordance with 
this prediction. The corresponding 2 + 2 + 2 dissociation is symmetry-forbidden 
analogous to the symmetry-forbidden dissociation of benzene into three molecules 
acetylene. Consequently, (NH)6 , although experimentally unknown, might be 
stable. 

H 

H H 

Fig. 3. The stable (NH)6 

Generally speaking the stability of the 44-electron systems will be increased 
with respect to the 48-electron systems as the antibonding 3eo-orbital is un- 
occupied. 

The octahedral di-anion of benzene, (CH)g-,  may be thought of as built 
from two cyclopropenyl anions. It is questionable whether this species is stable 
itself; on combination of two such ions a large (dominant) price in Coulomb- 
energy has to be paid. Moreover the 1 t2u-orbital lies at nearly + 12 eV. This system 
cannot possibly exist. 

Possibly stable 44-electron systems are (CH)4(NH)2 and (CH)3(NH)~-. There 
is retention of approximate octahedral symmetry for trans-(CH)4(NH)2 (in Fig. 2: 
1, 2, 3, 4 = C, 5, 6 = N), as follows from the distances from the origin (center of 
mass): r(O-N)= 1.230 A, r(O-C)= 1.147 A. Also this retention is clear from the 
output vectors. Therefore we will keep referring to these structures as octahedral. 
Some polarization is present: according to a Mulliken population analysis the 
NH-groups bear 8.0 electrons, the CH-groups bear 7.0 electrons. In point group 
D4h the occupied t2,-orbital splits into an e,,- and a b/u-orbital, having IP's of 
2.8 and -0 .9  eV. Even though this last result is surely due to truncation of basis 
set - a larger basis set will bring this orbital down into the binding region [4] - it 
forms an indication for the instability of this molecule. This molecule is 509 
kcal/Mole endothermic with respect to the 2 + 2 + 2  dissociation. (CH)4(NH) 2 
(1, 2=N) is higher in energy and less attractive. On optimizing the geometry of 
(CH)3(NH) ~- (1, 3, 5=C) this compound is found to dissociate into two frag- 
ments and (CH)a(NH) +. This is a consequence of the fact that the t2,- and the 
tl,-orbital are no longer distinguishable in this C2v-subgrou p: both are converted 
into an al-, bt- and b2-orbital. 
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(CH)3 (NH)  ~ (1, 2, 5 = C )  is 393 k c a l / M o l e  endo the rmic  with  respect  to its 
2 + 2 + 2 d issoc ia t ion  produc ts .  The  IP ' s  o f  the 1 t2u-orbital,  in C3v the eu- and  
az , -orb i ta l s ,  are  a b o u t  12.1 eV. The  d i s to r t i on  of  oc t ahed ra l  symmet ry  is some-  
wha t  larger  for  this  c o m p o u n d .  

F ina l ly  non - symmet r i c  d i s to r t ions  were invest igated.  Several  possibi l i t ies  in 
which  one f ragment  was shifted into the  d i rec t ion  o f  one or  two o thers  were cal-  
cula ted ,  meanwhi le  keeping  all r ( O - C )  and  r ( O - N )  cons tant .  F o r  these calcula-  
t ions  we chose (CH)4(NH)2 .  The  o c t a h e d r a l  geomet ry  proves  to be a saddle  
p o i n t ;  a very s t rong preference  was f o u n d  for a d i s to r t ion  for  which the sym- 
me t ry  o f  the system reduces to C1. W e  conc lude  therefore  tha t  despi te  the occupa-  
t ion  of  the l t2 , -orbi ta l ,  which prec ludes  symmet r ic  d issocia t ions ,  these octa-  
hed ra l  c o m p o u n d s  canno t  poss ib ly  be s table .  
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